Pyramidal Inversion Energies of Hypervalent Selenoxides. An Ab Initio MO Study

Hiroyuki Fueno,*, ${ }^{\text {S }}$ Shigeru Ikuta, ${ }^{a}$ Haruo Matsuyama ${ }^{b}$ and Nobumasa Kamigata ${ }^{b}$
${ }^{a}$ Computer Center, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-03, Japan
${ }^{b}$ Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo, 192-03, Japan

Abstract

$A b$ initio MO computations on hypervalent selenoxides, $\mathrm{R}_{2} \mathrm{SeO}\left(\mathrm{R}=\mathrm{H}, \mathrm{F}\right.$ and $\left.\mathrm{CH}_{3}\right)$, have been performed to obtain their accurate pyramidal inversion energies, which are compared with the corresponding sulfoxides. The $\mathrm{Se}-\mathrm{O}$ bond at the saddle-point in the inversion reactions depends very much on both the basis set and level of theory employed; a method beyond the Hartree-Fock level of theory with an extended basis set is necessary to attain the present purpose. In difluoro selenoxide ($\mathrm{F}_{2} \mathrm{SeO}$) electron correlations greatly decrease the inversion energy, which is smaller than that in the analogous difluoro sulfoxide ($F_{2} \mathrm{SO}$). The present computations clearly indicate that the pyramidal inversion energies of compounds with a Se atom depend on the substituent R in $\mathrm{R}_{2} \mathrm{SeO}$ and that they are not always larger than those with a lower principal quantum number (for example, a S atom) in the same group of the periodic table.

Racemization of selenoxides ${ }^{1}$ and sulfoxides ${ }^{2}$ occurs through pyramidal inversion. Thus the size of the pyramidal inversion

energies mainly determines their reactivity. The energies usually increase with increasing principal quantum number, if molecules including elements from the same group of the periodic table are compared. This tendency is also believed to be true in the hypervalent species including the main group IVa elements (S and Se) \dagger
Recently one of the present authors observed that the pyramidal inversion energies of the diastereomeric selenoxides may be quite small ($c a .20 \mathrm{kcal} \mathrm{mol}^{-1}$), \ddagger half that of the corresponding sulfoxides. ${ }^{1}$

In the present paper accurate determinations of the pyramidal inversion energies of the model hypervalent compounds $\mathrm{R}_{2} \mathrm{SeO}\left(\mathrm{R}=\mathrm{H}, \mathrm{F}\right.$ and $\left.\mathrm{CH}_{3}\right)$ will be performed, and the results compared with the corresponding sulfoxides.
The importance of the basis set extension will be noted in the geometry surveys at the saddle-points in the pyramidal inversion reactions of selenoxides. Taking electron correlation (at beyond the Hartree-Fock level of theory) will greatly reduce the inversion energies in difluoro-compounds ($\mathrm{F}_{2} \mathrm{SeO}$ and $\mathrm{F}_{2} \mathrm{SO}$). The energy of $\mathrm{F}_{2} \mathrm{SeO}$, being $7-8 \mathrm{kcal} \mathrm{mol}^{-1}$ smaller than that of the corresponding sulfoxide ($\mathrm{F}_{2} \mathrm{SO}$), may provide us with very important insights to interpret the experimental activation energy for the pyramidal inversion of diastereomeric selenoxides.

Method

Geometries at global minima and saddle-points in the pyramidal inversion reactions of hypervalent selenoxides (and

[^0]sulfoxides for comparison) were fully optimized using both Hartree-Fock (HF) ${ }^{3}$ and second-order Møller-Plesset perturbation (MP2) ${ }^{4}$ methods. Normal vibrational frequencies were calculated to ascertain the geometries and to obtain their zeropoint vibrational energies.
Since geometries at the saddle-points of selenoxides depend greatly on the basis sets used, the following two were applied to the geometry surveys: (i) $3-21 \mathrm{G}$ (d) for a Se atom and 6 $31 \mathrm{G}(\mathrm{d}, \mathrm{p})^{5}$ for other atoms [denoted as the basis set (i), hereafter]; (ii) ($20 \mathrm{~s} 15 \mathrm{p} 9 \mathrm{~d} / 13 \mathrm{~s} 10 \mathrm{p} 3 \mathrm{~d}$) for a Se atom, ($13 \mathrm{~s} 8 \mathrm{p} 2 \mathrm{~d} / 7 \mathrm{~s} 4 \mathrm{p} 2 \mathrm{~d}$) for O and F atoms, and ($8 \mathrm{~s} 2 \mathrm{p} / 5 \mathrm{~s} 2 \mathrm{p}$) for H atom ${ }^{6}$ [denoted as the basis set (ii) and/or the extended basis set, hereafter].
In sulfoxides the MP2 method with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets was applied to both the geometry surveys and vibrational analysis.

Final energies at both the global minimum and saddlepoint in $\mathrm{H}_{2} \mathrm{SeO}$ were obtained by using the following two levels of theory: (a) the fourth-order Møller-Plesset perturbation including single, double, triple and quadruple excitations (MP4SDTQ) ${ }^{7}$ with the basis set (i), and (b) the third-order Møller-Plesset perturbation method (MP3) ${ }^{8}$ with the basis set (ii). For $\mathrm{F}_{2} \mathrm{SeO}$ the latter level of theory was used. The final energies for the corresponding sulfoxides, $\mathrm{H}_{2} \mathrm{SO}$ and $\mathrm{F}_{2} \mathrm{SO}$, were computed by the MP4SDTQ and MP4SDQ methods, respectively, with the $6-311++G(2 d, p)$ basis set. ${ }^{9}$ The MP2optimized geometries were applied to these energy calculations.
The HF method using the basis set (i) was applied to geometry surveys and the MP3 method to final energy computations in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{XO}(\mathrm{X}=\mathrm{S}$ and Se$)$ owing to the size of the system.
All calculations were performed by using the North-Dakota version of GAMESS ${ }^{10}$ and GAUSSIAN90 ${ }^{11}$ programs at the Computer Center of Tokyo Metropolitan University; the VAX 9210 VP and IBM RS6000 computers were used.

Results and Discussion

Geometries.-Optimized geometries at global minima and saddle-points in the pyramidal inversion reactions of selenoxides, $\mathrm{R}_{2} \mathrm{SeO}(\mathrm{R}=\mathrm{H}$ and F$)$, are shown in Fig. 1.
$\mathrm{H}_{2} \mathrm{SeO}$ molecule. The most probable $\mathrm{Se}-\mathrm{O}$ bond length at the
(a)

(c)

(b)

(d)

Fig. 1 Geometries at (a) the global minimum and (b) the saddle-point in the pyramidal inversion reactions of $\mathrm{H}_{2} \mathrm{SeO}$, and at (c) the global minimum and (d) the saddle-point in the reactions of $\mathrm{F}_{2} \mathrm{SeO}$, optimized by the HF and MP2 methods with the extended basis set [basis set (ii)]. The values underlined are their MP2 parameters. The bond lengths are in angstroms and the bond angles in degrees.
(a)

(b)

Fig. 2 Geometries at (a) the global minimum and (b) the saddle-point in the pyramidal inversion reaction of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SeO}$, optimized by the HF method with the basis set (i). The bond lengths are in angstroms and the bond angles in degrees.
saddle-point of $\mathrm{H}_{2} \mathrm{SeO}$, obtained by the MP2 method with the extended basis set (ii), is $1.67 \AA$, which is $0.02 \AA$ shorter than that by the corresponding HF level of theory. The bond length of $1.67 \AA$ is shorter by 0.14 and $0.05 \AA$ than those obtained by the HF and MP2 methods, respectively, with the less extended basis set (i). No other geometrical parameters depend on the basis set and level of computation so much.

The $\mathrm{Se}-\mathrm{O}$ bond length ($1.65 \AA$) and the HSeO angle $\left(106.5^{\circ}\right.$) at the global minimum, calculated by the second-order MøllerPlesset perturbation method (MP2) with the extended basis set (ii), are in good agreement with the experimental values for more complex diaryl selenoxides. ${ }^{12}$
$\mathrm{F}_{2} \mathrm{SeO}$ molecule. The above discussions also hold good in the $\mathrm{F}_{2} \mathrm{SeO}$ system, except that an electron correlation lengthens the Hartree-Fock Se-O bond by $0.07 \AA$ at the saddle-point.
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SeO}$ molecule. The geometries at the global minimum and saddle-point in the pyramidal inversion reaction of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SeO}$ are shown in Fig. 2. These were obtained at the Hartree-Fock level of theory with the basis set (i). Although the geometry optimizations with the extended basis set were not performed owing to the size of the system, these geometries at the global minimum are again in good agreement with the

Table 1 Normal vibrational frequencies $/ \mathrm{cm}^{-1}$ of (a) $\mathrm{H}_{2} \mathrm{SeO}$ and $\mathrm{F}_{2} \mathrm{SeO}$, and (b) $\mathrm{H}_{2} \mathrm{SO}$ and $\mathrm{F}_{2} \mathrm{SO}$ at their global minima and saddlepoints in the pyramidal inversion reactions

$(a)^{a}$			
$\mathrm{H}_{2} \mathrm{SeO}$		$\mathrm{F}_{2} \mathrm{SeO}$	
Minimum	Saddle	Minimum	Saddle
$\mathrm{a}^{\prime} 869$	b1 1270 i	$\mathrm{a}^{\prime} 319$	b1 182i
$\mathrm{a}^{\prime \prime} 911$	b2 570	$\mathrm{a}^{\prime \prime} 329$	a1 314
$\mathrm{a}^{\prime} 965$	a1 589	$\mathrm{a}^{\prime} 419$	b2 477
$\mathrm{a}^{\prime} 1234$	a1 1166	$\mathrm{a}^{\prime \prime} 760$	a1 645
$\mathrm{a}^{\prime \prime} 2396$	a1 2621	$\mathrm{a}^{\prime} 792$	b2 657
$\mathrm{a}^{\prime} 2401$	b2 2653	$\mathbf{a}^{\prime} 1154$	a1 1187
$E_{\text {zp }}{ }^{\text {b }} 12.6$	10.9	5.4	4.7
$(b){ }^{\text {c }}$			
$\mathrm{H}_{2} \mathrm{SO}$		$\mathrm{F}_{2} \mathrm{SO}$	
Minimum	Saddle	Minimum	Saddle
$\mathrm{a}^{\prime \prime} 1031$	b1 1372i	$\mathrm{a}^{\prime} 355$	b1 346i
$\mathrm{a}^{\prime} 1115$	b2 791	$\mathrm{a}^{\prime \prime} 366$	a1 345
$\mathrm{a}^{\prime} 1184$	a1 1040	$\mathrm{a}^{\prime} 507$	b2 500
$\mathrm{a}^{\prime} 1307$	a1 1364	$\mathrm{a}^{\prime \prime} 781$	a1 601
a" 2515	a1 2854	$\mathrm{a}^{\prime}{ }^{\prime} 831$	b2 787
$\mathrm{a}^{\prime} 2517$	b2 2900	$\mathrm{a}^{\prime} 1370$	a1 1156
$E_{\text {zp }} 13.8$	12.8	6.0	4.8

${ }^{a}$ HF method with basis set (i). ${ }^{b}$ Zero-point vibrational energies in kcal mol^{-1}. No correction factors were multiplied. ${ }^{c}$ MP2 method with the 6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set.
experimental values for large systems like diaryl selenoxide. The $\mathrm{Se}-\mathrm{O}$ bond-length ($1.717 \AA$) at the saddle-point becomes short, if one applies more accurate levels of theory.

Sulfoxides. The geometries of the corresponding sulfoxides $\left(\mathrm{H}_{2} \mathrm{SO}\right.$ and $\left.\mathrm{F}_{2} \mathrm{SO}\right)$, optimized at both the Hartree-Fock and the MP2 levels of theory with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set are shown in Fig. 3. The MP2 bond lengths are 0.024-0.065 \AA longer than the HF ones, except those at the saddle-point of $\mathrm{H}_{2} \mathrm{SO}$, where the MP2 geometry optimization does not change the HF parameters at all.

Vibrational Frequencies and Zero-point Energies.-Normal vibrational frequencies, their symmetry, and zero-point vibrational energies in $\mathrm{H}_{2} \mathrm{SeO}$ and $\mathrm{F}_{2} \mathrm{SeO}$ at both the global minima and the saddle-points are listed in Table $1(a)$, where the Hartree-Fock level of theory with the basis set (i) was used. No correction factors were multiplied in these values. These data clearly show that each saddle-point has one imaginary frequency, indicating the real saddle-point in the reaction path.
Normal vibrational frequencies and zero-point energies for the corresponding sulfoxides are listed in Table $1(b)$, and were obtained by the MP2 method with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set.
Geometries at both the global minimum and saddle-point in the pyramidal inversion reaction of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ are shown in Fig. 4, where the Hartree-Fock method with the $6-31 \mathrm{G}(\mathrm{d})$ basis set was used. The vibrational frequencies and zero-point energies are included in the figure caption.

Pyramidal Inversion Energies.--Computed pyramidal inversion energies are listed in Tables 2 and 3.
$\mathrm{H}_{2} \mathrm{SeO}$ molecule. Pyramidal inversion energies of $\mathrm{H}_{2} \mathrm{SeO}$ calculated at various levels of theory with several basis sets are listed in Table 2. The MP3 energy using the extended basis set (ii) is $47 \mathrm{kcal}^{2} \mathrm{~mol}^{-1}$, which is in fairly good agreement with the MP3 ($48 \mathrm{kcal} \mathrm{mol}^{-1}$) and MP4SDTQ values ($49 \mathrm{kcal} \mathrm{mol}^{-1}$) with the lower quality basis set (i). An f-function added on the Se atom does not change the energy at all. Thus the probable

Fig. 3 Geometries at (a) the global minimum and (b) the saddle-point in the pyramidal inversion reactions of $\mathrm{H}_{2} \mathrm{SO}$, and at (c) the global minimum and (d) the saddle-point in the reactions of $\mathrm{F}_{2} \mathrm{SO}$, optimized by both the HF and MP2 methods using the 6-31G(d, p) basis set. The values underlined are their MP2 parameters. The bond lengths are in angstroms and the bond angles in degrees.

Table 2 Pyramidal inversion energies (in $\mathrm{kcal} \mathrm{mol}^{-1}$) of $\mathrm{H}_{2} \mathrm{SeO}$ calculated at various levels of theory ${ }^{a}$

	Basis set									
Method	I^{b}	II^{c}	III^{d}	IV^{e}	$\mathrm{~V}^{\boldsymbol{f}}$					
HF	49	49	48	48						
MP2	50	50	49		49					
MP3	48	48	47		47					
MP4SDQ	49	49								
MP4SDTQ	49	49								

${ }^{a}$ Thermal energy corrections $\left(1.0-1.5 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ should be subtracted from these values. ${ }^{b} 3-21 \mathrm{G}(\mathrm{d})$ for a Se atom and $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets for O and H atoms [basis set (i)] at their HF geometries. ${ }^{c}$ An f-function is added on the Se atom. Other basis sets and geometries are the same as I. ${ }^{d}$ The extended basis set (see the text) was used at the HF geometries optimized with the basis set (i). ${ }^{e}$ The extended basis set was used at their HF geometries. ${ }^{f}$ The extended basis set was used at their MP2 geometries.
energy, including the thermal energy correction ($1-1.5 \mathrm{kcal}$ mol^{-1}), is predicted to be $46-47 \mathrm{kcal} \mathrm{mol}^{-1}$. The electron correlation does not affect the energy at all, contrary to the results on $\mathrm{F}_{2} \mathrm{SeO}$, where an electron correlation decreases the energy greatly.

The inversion energy of $\mathrm{H}_{2} \mathrm{SeO}\left(46-47 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ is $7-8 \mathrm{kcal}$ mol^{-1} larger than that of the corresponding sulfoxide $\left(\mathrm{H}_{2} \mathrm{SO}\right)$ listed in Table 3; the energy calculated by the MP4SDTQ method with the $6-311+G(2 d, p)$ basis set at the MP2/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ geometries (shown in Fig. 3) is $40 \mathrm{kcal} \mathrm{mol}^{-1}$ after the thermal energy correction of $c a .1 \mathrm{kcal} \mathrm{mol}{ }^{-1}$.
$\mathrm{F}_{2} \mathrm{SeO}$ molecule. Pyramidal inversion energies are 29 and 37 kcal mol ${ }^{-1}$ computed by using the MP2 and MP3 levels of theory, respectively, with the extended basis set (ii) (after the thermal energy correction of $0.7 \mathrm{kcal} \mathrm{mol}^{-1}$) at their MP2 geometries. Surprisingly electron correlation drastically reduces the HF energy, by 18 and $11 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ at the MP2 and MP3 levels, respectively. Most probable energy of $\mathrm{F}_{2} \mathrm{SeO}$ may be ca. $34 \mathrm{kcal} \mathrm{mol}^{-1}$, by reference to the data on sulfoxides listed in Table 3, where the MP4SDQ level of computation reduces the MP3 energy by $3 \mathrm{kcal} \mathrm{mol}^{-1}$.

The inversion energies of the corresponding $\mathrm{F}_{2} \mathrm{SO}$, computed by using the HF, MP2, MP3 and MP4SDQ methods with the $6-311+\mathrm{G}(2 \mathrm{~d})$ basis set at the MP2/6-31G(d) geometries, are $59,39,45$ and $42 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, after the thermal energy correction ($1 \mathrm{kcal} \mathrm{mol}^{-1}$).
(a)

(b)

Fig. 4 Geometries at (a) the global minimum and (b) the saddle-point in the pyramidal inversion reaction of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$, optimized by the HF method with the $6-31 \mathrm{G}(\mathrm{d})$ basis sets. The bond lengths are in angstroms and the bond angles in degrees. Vibrational frequencies $/ \mathrm{cm}^{-1}$ and zeropoint energies $/ \mathrm{kcal} \mathrm{mol}^{-1}$ are as follows: (a) 207, 254, 312, 340, 399, 751, $794,1002,1053,1073,1149,1175,1498,1520,1589,1602,1606,1623$, $3222,3226,3315,3320,3326,3326, E_{\text {zp }}=53.9$; (b) $634 i, 112,137,274$, 282, 661, 821, 959, 998, 1089, 1173, 1178, 1502, 1533, 1585, 1586, 1644, $1655,3238,3243,3334,3337,3338,3340, E_{\text {zp }}=52.9$.

Table 3 Pyramidal inversion energies (in $\mathrm{kcal} \mathrm{mol}^{-1}$) calculated after thermal energy corrections ${ }^{a}$ for $\mathrm{H}_{2} \mathrm{SO}, \mathrm{F}_{2} \mathrm{SeO}, \mathrm{F}_{2} \mathrm{SO},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SeO}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$

Compound	Basis set	Method	Energy $/ \mathrm{kcal} \mathrm{mol}{ }^{-1}$
$\mathrm{H}_{2} \mathrm{SO}$	$6-311+\mathrm{G}(2 \mathrm{~d}, \mathrm{p})$	HF	43
		MP2	40
		MP3	39
		MP4SDQ	40
		MP4SDTQ	40
$\mathrm{~F}_{2} \mathrm{SeO}$	(ii) b	HF	48
		MP2	29
		MP3	37
$\mathrm{~F}_{2} \mathrm{SO}$	$6-311+\mathrm{G}(2 \mathrm{~d})$	HF	59
		MP2	39
		MP3	45
		MP4SDQ	42
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SeO}$	(i)		
		HF	55
		MP2	52
		MP3	50
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$	$6-31+\mathrm{G}(2 \mathrm{~d})$	HF	52
		MP2	48
		MP3	48

${ }^{a}$ Thermal energy corrections of $0.7-1.0 \mathrm{kcal} \mathrm{mol}^{-1}$ were assumed. ${ }^{b}$ Extended basis set. See the text. ${ }^{\text {c }} 3-21 \mathrm{G}(\mathrm{d})$ for a Se atom and $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ for other atoms.

The probable energy of $34 \mathrm{kcal} \mathrm{mol}^{-1}$ in $\mathrm{F}_{2} \mathrm{SeO}$ is $7-8 \mathrm{kcal}$ mol^{-1} smaller than that of the corresponding sulfoxide ($\mathrm{F}_{2} \mathrm{SO}$). Although this fact seems somewhat anomalous in a common chemical sense, it may provide us with a very important hint to interpret the Gibbs free energies for the pyramidal inversion of diaryl selenoxides.
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SeO}$ molecule. The pyramidal inversion energy, calculated by the MP3 method with the basis set (i) at their HF geometries, is $c a$. $50 \mathrm{kcal}_{\mathrm{mol}^{-1}}$ after the thermal energy correction of $1 \mathrm{kcal} \mathrm{mol}^{-1}$.

This energy of $50 \mathrm{kcal} \mathrm{mol}^{-1}$ is very similar to that (ca. 48 kcal mol^{-1}) in the corresponding sulfoxide, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$, calculated
by the MP3 method with the $6-31+G(2 d)$ basis set at their HF/6-31G(d) geometries.

Conclusions

The present computations clearly indicate that the pyramidal inversion energies ($34-50 \mathrm{kcal} \mathrm{mol}^{-1}$) of compounds with a Se atom depend on the substituent R in $\mathrm{R}_{2} \mathrm{SeO}$, and that they are not always larger than those with a lower principal quantum number (for example a S atom) in the same main group of the periodic table.

References

1 N, Kamigata and T. Shimizu, Yuki Gosei Kagaku Kyokaishi, 1990, 48, 229; N. Kamigata and T. Shimizu, Reviews on Heteroatom Chemistry, 1991, 4, 226.
2 D. R. Rayner, A. J. Gordon and K. Mislow, J. Am. Chem. Soc., 1968, 90, 4854 .
3 C. C. J. Roothaan, Rev. Mod. Phys., 1951, 23, 69.
4 C. Moller and M. S. Plesset, Physical Review, 1934, 46, 618.
5 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257; M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654; K. D. Dobbs and W. J. Hehre, J. Comput. Chem., 1986, 7, 359.

6 R. Poirier, R. Kari and I. G. Csizmadia, Handbook of Gaussian basis sets, Elsevier, Amsterdam, 1985.
7 R. Krishnan and J. A. Pople, Int. J. Quantum Chem., 1978, 14, 91; R. Krishnan, M. J. Frisch and J. A. Pople, J. Chem. Phys., 1980, 72, 4244.

8 J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quantum Chem. Symp., 1977, 11, 149.
9 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650; A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639; T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. v. R. Schleyer, J. Comput. Chem., 1983, 4, 294; M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265.
10 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, J. H. Jensen, S. Koseki, M. S. Gordon, K. A. Nguyen, T. L. Windus and S. T. Elbert, $Q C P E$ Bulletin, 1990, 10, 52.
11 M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. Raghavachari, M. A. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1990.

12 T. Shimizu, K. Kikuchi, Y. Ishikawa, I. Ikemoto, M. Kobayashi and N. Kamigata, J. Chem. Soc., Perkin Trans. 1, 1989, 597.

Paper 2/03016K
Received 8th June 1992
Accepted 29th June 1992

[^0]: \dagger For example, optically active sulfur and selenium compounds may be isolated as stable crystals whereas no optically active oxygen compound has been synthesized.
 $\ddagger 1 \mathrm{cal}=4.184 \mathrm{~J}$.

